PaC Exercise 3.1
Posted on February 18, 2021
import numpy as np
Exercise 3.1
Let X be a number chosen uniformly at random from [1, n]. Find Var(X).
Solution: We have
$$
E[X] = \sum_{i=1}^n i P(X=i) = \frac 1 n \sum_{i=1}^n i = \frac 1 n \frac{n(n+1)}{2} = \frac{n+1}{2},
$$
and
$$
E[X^2] = \sum_{i=1}^n i^2 P(X^2=i) = \frac 1 n \sum_{i=1}^n i^2 = \frac 1 n \frac{n(n+1)(2n+1)}{6}
= \frac{(n+1)(2n+1)}{6}.
$$
$$
\mathrm{Var}(X) = E[X^2] - E[X]^2 = \frac{n^2-1}{12}.
$$
For instance, Var(X) = 60.66… for n = 27.
We verify this result with simple sampling.
= 10**7
num_samples = 27
n
= np.random.randint(low=1, high=n+1, size=num_samples)
samples
- samples.mean())**2) np.mean((samples
60.66757909209802